Cultivar Evaluation of Vegetable Soybean on Guam

MARI MARUTANI & ROBERT SCHLUB

College of Agriculture & Life Sciences, University of Guam UOG Station, Mangilao GU 96923

Abstract—Vegetable soybean (*Glycine max* (L.) Merrill) accessions developed at the Asian Vegetable Research & Development Center (AVRDC) in Taiwan were evaluated in Guam cobbly clay soil during dry months of 1996 and 2000–01. In 1996 among five accessions, AGS190 (Veroy #4) and AGS335 (Ryokkoh x Mikawashima) were selected for their high yields. During 2000–01, eleven accessions including eight new germlines obtained from AVRDC were grown in order to identify accessions which produced two or more seeded-pods with good seed quality. AGS360 [Neu Ta Pien #2 x (PI 157424 x KS #8)] was our selection. Although its yield was lower than some other accessions, AGS360 had the largest green pods and seeds, which is a desirable trait for marketing. Further field experiments including on-farm trials should be conducted before local selections are released in Guam

Introduction

The vegetable soybean (*Glycine max* (L.) Merrill) is consumed as a popular snack and a vegetable dish in many Asian countries. In Japan, it is consumed mainly as an appetizer with beer (Nakano 1991). Vegetable soybean is one of the main frozen vegetables exported to Japan (Cheng 1991). Unlike grain soybeans, vegetable soybean pods are harvested when the seeds have reached full size and the pods are still green. Vegetable soybean is rich in protein, vitamins A, C and E, and minerals such as calcium and iron (Masuda 1991).

A small but established niche market for vegetable soybeans exists in Guam. In Guam vegetable soybeans are served at many Japanese and Korean restaurants and bars, and some oriental supermarkets sell the frozen vegetable soybeans that have been imported either from Japan or Taiwan (M. Marutani, personal observation). It is hoped that this market will support the development of locally produced vegetable soybeans as an import substitute.

The vegetable soybean project was initiated at the University of Guam in April 1996 with the support of the USDA Western Region Sustainable Agriculture Research and Education, Farmer/Rancher Research Grant to explore the yield potential of crops on the island. After screening accessions on the Agricultural Experiment farm and on-farm trials, selected lines will be released to local community. This paper reports results of initial field screening of vegetable soybean accessions on Guam.

Micronesica Suppl. 7, 2003

Materials and Methods

A total of 13 vegetable soybean accessions were tested on Guam in 1996 and 2000–01. Parents or the names of pureline of each accession are listed in Table 1. Seeds of all vegetable soybean lines were obtained from the Asian Vegetable Development Center (AVRDC) in Taiwan. In 1996 two trials were conducted to evaluate five accessions, AGS190, AGS292, AGS332, AGS335, and AGS336. The first evaluation was initiated on 12 Apr., 1996, in a farmer's field composed of Guam cobbly clay soil (clayey, gibbsitic, nonacid, isohyperthermic, Lithic Ustorthents) with a pH of around 7.5. It is a typical soil found in the northern part of Guam with very shallow soil laying on limestone beds. The second trial was conducted on the University of Guam campus, having the soil classified as Guam cobbly clay. This trial was started on 21 May, 1996. In both trials, five AVRDC lines were tested in a randomized complete block design (RCB) with four replications. The plot consisted of a 5 m row containing 100 seeds with 1.5 m between two adjacent rows. There were border rows and plants at the ends of a row surrounding the test plots. Data were taken for yield and for horticultural traits of accessions as suggested by the AVRDC Cultivar Evaluation Guide (AVRDC 1996). Plant characteristics studied included the number of days to emergence (when 50% of the plants in a plot germinated), the number of days to flower (when 50% of the plants in a plot produced their first flower), the number of days to harvest, plant height at flowering, plant height at maturity or harvest, the number of nodes on main stem, the number and the weight of 1-seeded and ≥ 2 seeded pods harvested from five plants, and pod yield and plant fresh biomass (leaves + stem) yield per plot. Seed pods were characterized by their length and width. The weight of pod was compared by counting the number of pods in 200 gm. The smaller the number of pods in a given mass, the heavier the pods. The color of pods was also recorded as dark green, green, yellow green or yellow. Seeds were characterized by their fresh and dry weight.

Table 1. Soybean accessions evaluated on Guam. All accessions were obtained from AVRDC in Taiwan.

Acc. No.	Parent or Name of Pureline
AGS190	Vesoy #4
AGS292	Taisho Shiroge
AGS332	Ryokkoh x KS #8
AGS335	Ryokkoh x Mikawashima
AGS336	(SRF 400 x Tsurunoko) x Taisho Shiroge
AGS 346	[Ryokkoh x (Shih SHih x SRF 400)] x Emerald
AGS 358	(Ryokkoh x KS #8) x Taisho Shiroge
AGS 359	(Ryokkoh x KS #8) x Taisho Shiroge
AGS 360	Neu Ta Pien #2 x (PI 157424 x KS #8)
AGS 361	Ryokkoh x F ₅ [PI157424 x KS #8) x Neu Ta Pien #2]
AGS 362	(Ryokkoh x KS #8) x (Ryokkoh x Mikawashima)
AGS 363	(Ryokkoh x KS #8) x Taisho Shiroge
AGS 364	(Ryokkoh x KS #8) x Vesoy #4

AGS190 AGS292	flower 35 33 33 35 30 31.4	harvest 73 49 66 62 54 60.8	at harvest 62 41 29 40 64 64 14.3 15.4	Total pods 1606 896 740 1162 1081 1081 1096.7 745.9 34.6	er harvest Total pods \geq 2 seed pods Leaves+stems at harvest on main stem 73 62 1606 1192 2258 19.4 10.3 49 41 896 665 1992 220.0 8.0 66 29 740 680 1632 27.1 11.9 62 40 1162 1062 1581 25.1 11.9 62 40 1162 1062 1581 25.1 11.9 63 47.2 1081 897 2640 21.6 9.8 14.3 745.9 522.5 1052.8 3.6 2.1 10.3 15.4 34.6 29.6 25.8 8.1 10.3 2.1	ods Leaves+ste 2258 1992 1632 1581 2640 2640 2640 25.8	Leaves+stems 2258 1992 1632 1581 2640 2640 2080.7 1052.8 25.8	at harvest 19.4 20.0 27.1 21.6 21.6 3.6 8.1 8.1		on main stem 10.3 8.0 11.9 9.8 9.8 11.4 9.8 2.1 10.3 2.1
AGS190 AGS292	35 25 33 33 30 31.4	73 49 66 62 60.8	62 41 29 40 64 47.2 14.3 15.4	1606 896 740 1162 1081 1081 745.9 34.6	1192 665 680 1062 899.2 29.6 29.6	225 163 163 163 105 105 105	88 00 5.8 8 2.8 7 8 7 8 8 8 7 8 8 8 8 7 8 8 8 8 8 8 8	19.4 20.0 27.1 25.1 21.6 21.6 3.6 8.1		10.3 8.0 11.9 9.8 9.8 10.3 2.1 10.3
AGS332 AGS335	30 31.4	54 60.8	64 47.2 14.3 15.4	1081 1096.7 745.9 34.6	897 899.2 522.5 29.6	264 208 2 2 2	0 5.8 5.8	21.6 22.7 3.6 8.1		9.8 10.3 2.1 10.3
AGS336	31.4	60.8	47.2 14.3 15.4	1096.7 745.9 34.6	899.2 522.5 29.6	208 105 2	0.7 2.8 5.8	22.7 3.6 8.1		10.3 2.1 10.3
Mean LSD (0.05) CV (%)					2 					-
Accession	Pods no./5 plants		Pods wt./5 plants	ts Size of 2-seed pod		No. of pods	Wt (g) of	Wt (g) of 100 seeds	% DM	% Damage
	1 seed	≥ 2 seed 1	$1 \text{ seed } \ge 2 \text{ seed}$	ed L(cm)	W(cm) p	per 200 gm	Fresh	Dry	Seeds	Pods
AGS190 AGS292	21.8 31.3	103.0 73.3	12.3 135.8 23.3 102.8		1.4 1.3	128 133	23.3 26.8	7.8 6.2	33.5 23.3	6.0 12.5
AGS332 AGS335	22.3 18.0			8 5.2 6.7	1.1	200 129	39.5 35 0	12.6 9.5	31.9 27.7	7.3
AGS336	39.8		28.0 78.8		1.3	152	30.0	6.6	21.9	4.0
Mean	26.6	93.4	17.3 123.2		1.3	148.4 21 5	30.9 £ 0	8.5	27.5	9.1
(cn.0) dct	17.0 33.6		51.0 29.6 29.6	0 6 8.3	0.14 5.5	C.12 7.4	9.C 7.6	2.0 11.9	c.4 C.4	11.4 64.3

Marutani & Schlub: Soybean cultivars

95

Accession	Days to	Days to	% stand		Yield (g/plot)	ot)		Plant height (cm)		No. of nodes
	flower	harvest	at harvest	Total pods	≥ 2 seed pods		Leaves+stems	at harvest		on main stem
AGS190	37	<i>L</i> 6	48	3316	3185	26	72	42.8		13
AC\$707	LC	63	57	1500	1448	- <u>-</u>		28.6		0
AGS332	17 72	06	37 75	1179	1068	151	1561	28.8 28.8		. 5
AGS335	37	09	47	1504	1370	191	01	0.00 0.07		1 5
AGS336	27	65	45	1235	1078	14.1	1492	32.8		10
Mean	33.0	76.8	45.9	1764 9	1629.8	17(1709 3	37.2		11 3
LSD (0.05)			25.7	1194.7	1135.8	15.	1599.1	11.9		1.7
CV (%)			28.6	34.5	35.5		47.7	16.3		7.7
Accession	Pods no./5 plants	/5 plants	Pods wt./5 plants		Size of 2-seed pod N	No. of pods	Wt (g) c	Wt (g) of 100 seeds	% DM	% Damage
	1 seed	≥ 2 seed	1 seed ≥ 2 s	2 seed L(cm)	W(cm) p	per 200 gm	Fresh	Dry	Seeds	Pods
AGS190	15.0	147.7			1.3	76	57.5	21.4	37.1	22.1
AGS292	13.2	80.5	11.5 164.3		2.2	98	47.5	13.6	28.7	0.0
AGS332	33.0	128.5			1.2	104	59.3	17.6	29.8	2.8
AGS335	15.2	85.3	20.0 178.3	3.3 7.1	2.2	82	54.8	15.6	28.5	1.5
AGS336	25.5	82.5			2.0	113	46.5	12.3	26.3	0.5
Mean	20.4	104.9			1.8	94.7	53.1	16.1	30.1	5.4
LSD (0.05)	10.7	93.4 15 1	13.5 102.0	2.0 0.5 2 2 0.5	0.3	13.6 7.2	10.9	4.4 4.4	5.9	
UN (%)	20.0	4.04			0.2	c./	10.4	14.0	7.7	

plq 4+ 104 nlant height vield at þ 7 2 _ (

Micronesica Suppl. 7, 2003

Table 0. Day	s to entergence, ^y soybean ac	 piant stand at now cessions evaluated 	in the Yigo Experim	ental Farm on Gu	able o. Days to entergence, we plant stand at fromering, days to fromering, days to narvest, plant negut and the number of nodes on main stent of sources of sources of the stent of sources of the stent of sources of the sources of the stent of the sources of the sources of the stent of the sources of the sources of the stent of the sources of the stent of the sources of the source	on 14 Dec 2000.	
Accession		% stand	Days to	Days to	Plant height (cm)	Plant height (cm) Plant height (cm)	No. of nodes
	emergence	at Howering	IIOWETING	narvest	at Howering	at maturity	on main stem
AGS190	6.0	41.7	29.0	63	16.6	20.5	8.0
AGS292	6.0	29.7	25.0	57	20.9	22.2	8.5
AGS335	6.0	11.3	33.0	75	19.5	23.5	9.4
AGS346	5.0	74.0	28.7	76	21.9	25.4	6.8
AGS358	5.0	65.3	28.7	69	23.9	27.8	8.9
AGS359	5.0	70.3	28.7	70	21.3	24.1	8.5
AGS360	6.0	33.7	28.7	71	20.9	23.9	8.4
AGS361	5.7	46.7	28.7	78	20.5	22.4	8.0
AGS362	5.7	42.0	33.0	64	23.6	29.3	10.1
AGS363	5.0	79.3	28.7	81	24.8	29.3	8.3
AGS364	5.0	69.0	28.7	68	22.8	28.1	8.2
Mean	5.5	51.2	29.2	70.2	21.5	25.1	8.5
LSD (0.05)	0.34	15.2	0.44		2.54	2.49	0.82
CV (%)	4.6	21.9	1.1		8.7	7.3	7.2

Table 6. Days to emergence, % plant stand at flowering, days to flowering, days to harvest, plant height and the number of nodes on main stem of

Marutani & Schlub: Soybean cultivars

Accession					2-seed pod	2-seed pod	Plant Stand
	1 seed	>2 seeds	1 seed	>2 seeds	Length (cm)	Width (cm)	at harvest (%)
AGS190	9.0	56.7	7.0	90.5	5.0	1.42	41.7
AGS292	9.0	66.7	6.2	112.0	5.1	1.40	29.0
AGS335	25.0	69.0	32.7	147.1	5.3	1.37	11.3
AGS346	6.3	44.3	7.4	94.9	5.1	1.44	72.3
AGS358	3.3	42.3	4.0	90.0	5.0	1.33	65.3
AGS359	2.3	43.7	2.4	73.0	5.0	1.27	70.0
AGS360	9.7	52.7	12.9	135.3	5.4	1.41	33.3
AGS361	5.0	45.0	6.3	99.3	5.1	1.40	44.0
AGS362	13.0	89.3	15.4	181.2	5.1	1.39	42.0
AGS363	4.0	37.7	5.3	81.5	5.1	1.32	79.0
AGS364	4.0	40.0	5.0	73.0	5.2	1.35	65.7
Mean	8.2	53.4	9.5	107.1	5.1	1.40	50.3
LSD (0.05)	5.80	33.96	6.73	71.67	0.33	0.24	14.41
CV (%)	51.9	46.9	52.1	49.9	4.7	12.6	21.1

Table 7. The number and weights of 1-seed and \geq 2-seed pods harvested from 5 plants, the length and width of 2-seed pod, plant stand % at harvest of soybeans evaluated in the Yigo Experimental Farm on Guam in 2000–01. Seeds were sown on 14 Dec 2000.

During 2000–01, eight new accessions (AGS346, AGS358, AGS359, AGS360, AGS361, AGS362, AGS363, and AGS364) were tested during the dry season in the Guam cobbly clay soil at the Yigo Agricultural Experiment Farm. The experiment also included three lines, AGS190, AGS292 and AGS335 which were studied in the 1996 trial. The 2000–01 trial aimed to select the accessions with large two-seeded pods. Seeds were sown on 14 Dec 2000. The same experimental design as the 1996 trial was used and the same phenological data were collected again by following the AVRDC Cultivar Evaluation Guide (AVRDC 1996). Data was analyzed by ANOVA (Abacus Concept, Super Anova 1997) to determine the degree of variation in horticultural traits among accessions.

Results and Discussion

The two 1996 trials showed that AGS 190 (Vesoy #4) and AGS335 (Ryokkoh x Mikawashima) were superior to others in yield (Tables 2 & 4) and had heavier pods (Tables 3 & 5). Pod borer was the most serious pest in the Dededo and Mangilao fields during 1996. *Corynespora* was the major fungal disease occurring in Dededo. Other disease pathogens were isolated but were responsible for only slight damages. Although the soil type was classified as the Guam cobbly clay in all experimental sites, the cropping history, cultural practices, and other environmental factors were different including pest and diseases pressures and other variables that influence plant performance. The results of two field experiments were summarized and presented in the AVRDC tropical vegetable newsletter (Schlub & Marutani 1996).

Accession		Yield (g)./pl	ot	Pod No.	Wt. of	
	Total pods	≥ 2 seed pods	Stem+Leaves+ Pods	per 200 g \geq 2 seeds	100 seeds $\geq 2 \text{ seeds}$	Pod color
AGS190	790	737	1565	123.7	33.1	Green
AGS292	577	480	1122	102.7	35.4	Green
AGS335	414	335	628	89.7	56.3	Green
AGS346	1248	1152	2103	86.3	57.6	Green
AGS358	1128	1055	2062	81.3	59.0	Green
AGS359	1168	1137	2268	110.3	45.2	Yellow-Green
AGS360	825	762	1383	75.3	68.6	Green
AGS361	1087	1007	2060	93.7	58.7	Yellow-Green
AGS362	985	893	2023	89.3	55.4	Yellow-Green
AGS363	1332	1237	2483	94.0	57.1	Yellow-Green
AGS364	1048	987	2289	77.3	58.4	Yellow-Green
Mean	963.8	889.3	1816.9	93.1	53.2	
LSD (0.05)	154.7	142.3	452.0	9.41	4.21	
CV (%)	11.8	11.8	18.3	7.5	5.8	

Table 8. Yields per plot, the number of pods per 200 gm, fresh weight of 100 seeds, and pod color of soybean accessions evaluated in the Yigo Experimental Farm on Guam in 2000–01. Seeds were sown on 14 Dec 2000.

The results of the 2000–01 trial are summarized in Table 6, 7, and 8. The average days from planting to flowering was 29 days. AGS292 was the earliest maturing line and was harvested in 57 days after planting. Among the advance lines, AGS360 [Neu Ta Pien #2 x (PI 157424 x KS #8)] had very attractive green pods compared to others with yellow-green pods. AGS360 also had large sized pods with 2–3 seeds, which is a desirable characteristic for marketing. In this study, the lower yield of some lines, including AGS360, was due mostly to poor germination at the beginning of the experiment due to improper setting of the irrigation system.

We plan to continue conducting vegetable soybean cultivar trials on agricultural experiment farms and on farmers' fields to further evaluate selected lines in collaboration with AVRDC. The future goal of this project is to release superior lines and to produce seeds locally for distribution.

Acknowledgements

The authors thank Joseph Tuquero, Peter Toves and Melinda Prado for their technical assistance. Appreciation also goes to Mr. Felix Quan for his participation. This project was supported by USDA Western Region Sustainable Agriculture Research and Education, Farmer/Rancher Research Grant (No. 95-COOP-1-2414, USU No. 96-129), USDA Regional Project (S-009, Plant Genetic Resources Conservation and Utilization), USDA Hatch Project (No. GUA00123), and USDA IPM 3D funding.

References

- Abacus Concept. 1997. SuperANOVA: Accessible General Linear Modeling. Abacus Concept Inc., Berkeley, CA.
- Cheng, S. H. 1991. Vegetable soybean area, production, and foreign and domestic trade in Taiwan. *In* S. Shanmugasundaram (ed.) Proceedings of vegetable soybean: research needs for production and quality improvement, pp. 17–21. Council of Agriculture, Republic of China; Provincial Dept. of Agriculture and Forestry, Taiwan; Asian Vegetable Research and Development Center.
- Masuda, R. 1991. Quality requirement and improvement of vegetable soybean. *In* S. Shanmugasundaram (ed.) Proceedings of vegetable soybean: research needs for production and quality improvement, pp. 92–102. Council of Agriculture, Republic of China; Provincial Dept. of Agriculture and Forestry, Taiwan; Asian Vegetable Research and Development Center.
- Nakano, H. 1991. Vegetable soybean area, production, demand, supply, domestic and foreign trade in Japan. *In* S. Shanmugasundaram (ed.) Proceedings of vegetable soybean: research needs for production and quality improvement, pp. 8–16. Council of Agriculture, Republic of China; Provincial Dept. of Agriculture and Forestry, Taiwan; Asian Vegetable Research and Development Center.
- Schlub, R. & M. Marutani. 1996. Potential of AVRDC developed vegetable soybeans in Guam. TVIS Newsletter July–December 1996 1: 12–13.