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Abstract-Insect wingbeat frequency has been used as a taxonomic char­
acter. To test the feasibility of developing instrumentation which mon-
itors the identity and population density of flying insects, wingbeat fre­
quencies of the mosquitoes, Aedes aegypti (L.) and A. triseriatus Say, 
were recorded using a microcomputer-based instrument which meas-
ured light reflected off the wings of individuals in flight. The wingbeat 
frequency and other spectral components from 403 individual record-
ings were used to train an artificial neural network. The trained network 
correctly identified the species and sex of mosquitoes in an indepen­
dently recorded group of 57 mosquitoes. This technology has potential 
use for detecting and monitoring a wide range of flying insects. 

Interspecific and intraspecific differences in wingbeat frequencies have been 
used to identify insects in flight (Reed et al. 1942, Sotavalta 1947, Sawedal & 
Hall 1979, Greenbank et al. 1980, Farmery 1982, Riley et al. 1983, Schaefer & 
Bent 1984, Unwin & Corbet 1984, Rose et al. 1985). To assess the feasibility of 
developing instrumentation which monitors the identity and population density 
of flying insects, Moore et al. ( 1986) measured wingbeat frequencies for individ­
uals from two species of mosquitoes, Aedes aegypti (L.) and A. triseriatus Say. 
by recording changes in the intensity of light reflected off wings during free flight 
(Fig. 1 ). Spectral analysis showed that each recording contained the wingbeat 
frequency plus several harmonics (Fig, 2). A univariate discriminant function 
calculated using wingbeat frequencies from one group of mosquitoes (which will 
be referred to as the 'training set') was used to identify the species and sex of 
individuals from a second, independently reared group ('test set') with an accuracy 
of 84%. Multivariate discriminant functions calculated using wingbeat frequencies 
and amplitudes of the first four harmonics did not improve accuracy, implying 
that characteristics of the frequency spectrum, other than the wingbeat frequency, 
were not useful for identification. However, recent analysis of data from this 
experiment using a new pattern recognition technique from the field of artificial 
intelligence shows that the frequency spectra are rich in information useful for 
identification. An artificial neural network (Stanley 1989) was trained using the 

1 Present address: Department of Entomology, CT AHR-Maui Research, University of Hawaii, 
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Figure I. Schematic diagram of equipment for recording and analyzing insect wing­
beat frequencies. 

training set and correctly identified the species and sex of every mosquito in the 
test set with a high degree of confidence. This new technology may be useful in 
developing a remote sensing monitoring system which automatically counts and 
identifies insects in flight. 

Following is a brief description of the experimental methods. Details can be 
found in Moore et al. (1986). An instrumentation system for recording and ana­
lyzing insect wingbeat frequencies was constructed (Fig. l ). The photosensor, 
consisting of a photodiode and amplifier (Unwin & Ellington 1979), detected 
fluctuations in light intensity caused by reflections off individual mosquitoes 
flying through a light beam. Digital recordings of the signals were made with a 
microcomputer (IBM PC) equipped with an analog-to-digital converter (Lab­
Tender, Tecmar Inc., Solon, Ohio) under the control ofa program which simulates 
a digital oscilloscope (SCOPE2, Moore Scientific, Kula, HI). A change in light 
intensity caused by a mosquito flying in front of the sensor triggered storage of 
512 samples at a rate of 10 kHz (Fig. 2A). Each signal was converted to a 256 
cell frequency spectrum using the fast Fourier transform (Cooper 1981). The 
frequency spectrum for each signal contained a harmonic series with the fun­
damental at the wingbeat frequency (Fig. 2B). 

In the original analysis, the wingbeat frequency and amplitudes of the first 
four harmonics were extracted from each signal in the training set (n = 403; 
approximately 100 signals for each species-sex combination). Discriminant func­
tions based on several combinations of these variables were calculated and were 
tested by using them to identify signals from the test set (n = 57; approximately 
15 signals for each species-sex combination). The function based on wingbeat 
frequency alone identified the correct species and sex 84% of the time. Accuracy 
did not improve when the amplitudes of the harmonics were used in the cal­
culations. 
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Figure 2. (A) Signal produced by the flight movements of a female Aedes aegypti 
mosquito. (B) Frequency spectrum. 

5000 



132 Micronesica Suppl. 3, 1991 

In the recent analysis, an artificial neural network in which the input layer 
contained 256 neurons (one for each cell in the frequency spectra), the hidden 
layer contained 127 neurons, and the output layer contained four neurons (one 
for each of the four species-sex combinations). Each fact in the training set con­
sisted of 256 numbers representing the amplitude of each cell in the frequency 
spectrum plus one of four identifying codes corresponding to the species-sex 
combination of the mosquito which produced the signal. 

After training to completion, the network was tested by using frequency 
spectra of signals in the test set as input. The species and sex of the mosquito 
causing each signal were identified correctly. Furthermore, each insect was iden­
tified with a high degree of confidence as indicated by the fact that the relative 
firing rate for the output neuron representing the correct species-sex combination 
ranged from 88% to 100% with a mean of 98%. 

This study demonstrates the feasibility of developing instrumentation ca­
pable of counting and identifying insects in flight. Even though morphologically 
similar species were used in the experiment, each signal, lasting only one-twen­
tieth of a second, contained information enabling identification of species and 
sex with a high degree of confidence. With further development, this type of 
instrumentation could become an important tool for research and pest control. 

A flight monitor designed for the field could use either the sun or an ap­
propriate artificial light source, such as a red or infra-red laser. Possible appli­
cations include continuous monitoring of several sympatric populations (useful 
for ecological and biological control studies), pollination studies, measurement 
of diurnal activity cycles, and evaluation of attractants and repellents. The system 
I envision will be able to count and identify several species flying through a 
defined volume of airspace. Such a monitor will be a useful entomological tool. 
A medical entomologist could use it to determine what species of mosquitos are 
present, how numerous they are, and when they are flying. A biocontrol specialist 
might monitor the flight activity of a host insect and several parasitoids and 
predators. 
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